Compare commits

...

18 Commits

Author SHA1 Message Date
Bernhard
c4e21dca22 Änderung CYCLE_COUNTER_MAX für Testzwecke 2026-01-24 19:38:15 +01:00
Bernhard
450e93982e Im Simu-Mode Bedienung über Tastatur 2026-01-24 18:56:30 +01:00
Bernhard
4bde0cc888 MQTT-Handling optimiert 2026-01-20 21:15:35 +01:00
Bernhard
281e70d91e Settings-Datei lesen fertig 2026-01-20 20:11:36 +01:00
Bernhard Schräer
874ebf51ba Settings-Datei fortgesetzt 2026-01-20 13:24:56 +01:00
Bernhard Schräer
b5f7b5a45d Erste Vorbereitungen für Settings-Datei 2026-01-20 07:33:02 +01:00
Bernhard
f91aee06c7 Korrektur bei Leistungsvorgabe in Schritten 2026-01-19 19:35:41 +01:00
Bernhard
1b265c71f0 Leistungsvorgabe jetzt in Schritten und nicht mehr in Prozent 2026-01-17 19:14:44 +01:00
Bernhard
c16ac482bd Alles wieder hinzufügen??? 2025-12-17 19:35:30 +01:00
Bernhard
555aa89479 Scripts hinzugefügt 2025-12-17 19:34:02 +01:00
Bernhard
c0c8d4d766 Commit script hinzugefügt 2025-12-17 19:22:37 +01:00
Bernhard
dcb267df89 ./git_commit_push.sh 2025-12-17 19:19:44 +01:00
Bernhard
c393706088 Scripte hinzugefügt 2025-12-12 18:53:35 +01:00
Bernhard
bd6e3bbfe9 Optimierung Systemhochlauf 2025-12-12 18:50:18 +01:00
Bernhard
fbff41de71 Service-Start-Script angepasst 2025-12-09 19:12:59 +01:00
Bernhard
bd55b94efa Ansteuerung Zünd-Relais 2025-12-08 19:39:13 +01:00
Bernhard
b10547e070 Zustünde Switch und Power publishen 2025-12-08 19:36:05 +01:00
Bernhard
48d3251247 Lesen von CAN Frames vorbereitet 2025-12-06 20:00:37 +01:00
18 changed files with 939 additions and 324 deletions

View File

@@ -1,10 +1,35 @@
#include "main.h"
#include <settings/settings.h>
#include <can/can_client.h>
#include <io/io.h>
#include <mqtt/mqtt_client.h>
struct MOTOR_CONTROL_DATA motctrl[MOTOR_COUNT];
struct CAN_INTERFACE_DATA intf_data[MOTOR_COUNT];
struct MOTOR_CONTROL_DATA motctrl[MAX_MOTOR_COUNT];
struct CAN_INTERFACE_DATA intf_data[MAX_MOTOR_COUNT];
int iBusTimeoutCounter = 0;
/// @brief Increase counter for cycles without received telegram
/// @param iMotorIndex
void IncBusTimeoutCounter(int iMotorIndex)
{
if (iBusTimeoutCounter < 2000)
{
iBusTimeoutCounter++;
if (iBusTimeoutCounter >= 2000)
{
// long time no telegram received -> motor is not connected anymore
motctrl[iMotorIndex].nSwitchState = 0;
motctrl[iMotorIndex].nDriveConnected = 0;
motctrl[iMotorIndex].nDriveReady = 0;
Can_SetMotorGear(iMotorIndex, 0);
MqttClient_Publish_MotorSwitchState(iMotorIndex, motctrl[iMotorIndex].nSwitchState);
}
}
}
/// @brief Open socket of CAN interface for the given motor
/// @param iMotorIndex
@@ -12,14 +37,36 @@ struct CAN_INTERFACE_DATA intf_data[MOTOR_COUNT];
/// @return
int Can_OpenInterface(int iMotorIndex, const char * ifacename)
{
// Init control data
motctrl[iMotorIndex].iActualMotorPowerW = 0;
motctrl[iMotorIndex].iMotorGear = MOTOR_GEAR_NEUTRAL;
motctrl[iMotorIndex].iMotorPowerRaw = 0;
motctrl[iMotorIndex].iMotorPowerSteps = 0;
motctrl[iMotorIndex].nSwitchState = 0;
motctrl[iMotorIndex].nDriveConnected = 0;
motctrl[iMotorIndex].nDriveReady = 0;
mylog(LOG_INFO, "CAN: PWR_MIN_RAW=%d PWR_MAX_RAW=%d PWR_STEP_COUNT=%d",
settings.iMotorPwrMinRaw, settings.iMotorPwrMaxRaw, settings.iMotorPwrStepCount);
strcpy(intf_data[iMotorIndex].iface_name, ifacename);
Can_SetMotorGear(iMotorIndex, 0);
Can_SetMotorGear(iMotorIndex, MOTOR_GEAR_NEUTRAL);
Can_SetMotorPower(iMotorIndex, 0);
if (settings.iCanSimu)
{
mylog(LOG_WARNING, "CAN: Using simulation mode (motor %d).", iMotorIndex);
intf_data[iMotorIndex].socket = -1;
motctrl[iMotorIndex].nSwitchState = 0xF5;
motctrl[iMotorIndex].nDriveConnected = 1;
motctrl[iMotorIndex].nDriveReady = 1;
}
else
{
// first we have to create a socket
if ((intf_data[iMotorIndex].socket = socket(PF_CAN, SOCK_RAW, CAN_RAW)) < 0)
{
printf("Could not create socket for motor %d!\n", iMotorIndex);
mylog(LOG_ERR, "CAN: Could not create socket for motor %d!", iMotorIndex);
return 1;
}
@@ -27,7 +74,7 @@ int Can_OpenInterface(int iMotorIndex, const char * ifacename)
strcpy(intf_data[iMotorIndex].ifr.ifr_name, intf_data[iMotorIndex].iface_name);
if (ioctl(intf_data[iMotorIndex].socket, SIOCGIFINDEX, &intf_data[iMotorIndex].ifr) < 0)
{
printf("Could not get interface index for motor %d!\n", iMotorIndex);
mylog(LOG_ERR, "CAN: Could not get interface index for motor %d!", iMotorIndex);
return 2;
}
@@ -37,11 +84,26 @@ int Can_OpenInterface(int iMotorIndex, const char * ifacename)
intf_data[iMotorIndex].addr.can_ifindex = intf_data[iMotorIndex].ifr.ifr_ifindex;
if (bind(intf_data[iMotorIndex].socket, (struct sockaddr *)&intf_data[iMotorIndex].addr, sizeof(intf_data[iMotorIndex].addr)) < 0)
{
printf("Could not bind socket to inteface for motor %d!\n", iMotorIndex);
mylog(LOG_ERR, "CAN: Could not bind socket to inteface for motor %d!", iMotorIndex);
return 3;
}
printf("Interface %s (motor %d) opened!\n", ifacename, iMotorIndex);
// make socket to nonblocking
int fcntl_flags = fcntl(intf_data[iMotorIndex].socket, F_GETFL, 0);
if (fcntl_flags < 0)
{
mylog(LOG_ERR, "CAN: Could not get file descriptor flags!");
return 4;
}
fcntl_flags |= O_NONBLOCK;
if (fcntl(intf_data[iMotorIndex].socket, F_SETFL, fcntl_flags) < 0)
{
mylog(LOG_ERR, "CAN: Could not set file descriptor flags (set socket none-blocking)!");
return 5;
}
mylog(LOG_INFO, "CAN: Interface %s (motor %d) opened!", ifacename, iMotorIndex);
}
return 0;
}
@@ -50,14 +112,21 @@ int Can_OpenInterface(int iMotorIndex, const char * ifacename)
/// @brief Close socket of CAN interface for the given motor
/// @param iMotorIndex
void Can_CloseInterface(int iMotorIndex)
{
if (intf_data[iMotorIndex].socket >= 0)
{
if (close(intf_data[iMotorIndex].socket) < 0)
{
printf("Could not close socket of motor %d!\n", iMotorIndex);
mylog(LOG_ERR, "CAN: Could not close socket of motor %d!", iMotorIndex);
}
else
{
printf("Interface %s (motor %d) closed.\n", intf_data[iMotorIndex].iface_name, iMotorIndex);
mylog(LOG_INFO, "CAN: Interface %s (motor %d) closed.", intf_data[iMotorIndex].iface_name, iMotorIndex);
}
}
else
{
mylog(LOG_INFO, "CAN: Close simulation mode.");
}
}
@@ -67,63 +136,90 @@ void Can_CloseInterface(int iMotorIndex)
/// @param iGear (-1=reverse, 0=neutral, 1=forward)
void Can_SetMotorGear(int iMotorIndex, int iGear)
{
if (iGear > 0)
if ((iGear > 0) && (motctrl[iMotorIndex].nDriveReady != 0))
{
if (motctrl[iMotorIndex].iMotorGear != MOTOR_GEAR_FORWARD)
{
MqttClient_Publish_MotorGear(iMotorIndex, iGear);
motctrl[iMotorIndex].iMotorGear = MOTOR_GEAR_FORWARD;
// motor is switched to forward -> set min. power
Can_SetMotorPower(iMotorIndex, 1);
}
WriteOutputPin(GPIO_LED_MOTRUN, HIGH);
printf("Motor[%d]: Set gear forward.\n", iMotorIndex);
mylog(LOG_INFO, "CAN: Motor[%d]: Set gear forward.", iMotorIndex);
}
else if (iGear < 0)
else if ((iGear < 0) && (motctrl[iMotorIndex].nDriveReady != 0))
{
if (motctrl[iMotorIndex].iMotorGear != MOTOR_GEAR_REVERSE)
{
MqttClient_Publish_MotorGear(iMotorIndex, iGear);
motctrl[iMotorIndex].iMotorGear = MOTOR_GEAR_REVERSE;
// motor is switched to reverse -> set min. power
Can_SetMotorPower(iMotorIndex, 1);
}
WriteOutputPin(GPIO_LED_MOTRUN, HIGH);
printf("Motor[%d]: Set gear reverse.\n", iMotorIndex);
mylog(LOG_INFO, "CAN: Motor[%d]: Set gear reverse.", iMotorIndex);
}
else
{
if (motctrl[iMotorIndex].iMotorGear != MOTOR_GEAR_NEUTRAL)
{
MqttClient_Publish_MotorGear(iMotorIndex, iGear);
motctrl[iMotorIndex].iMotorGear = MOTOR_GEAR_NEUTRAL;
}
Can_SetMotorPower(iMotorIndex, MOTOR_PWR_MIN_PCT);
// motor is switch to neutral -> set power to 0
Can_SetMotorPower(iMotorIndex, 0);
WriteOutputPin(GPIO_LED_MOTRUN, LOW);
printf("Motor[%d]: Set gear neutral.\n", iMotorIndex);
mylog(LOG_INFO, "CAN: Motor[%d]: Set gear neutral.", iMotorIndex);
}
MqttClient_Publish_MotorGear(iMotorIndex, iGear);
}
/// @brief Set power for the given motor
/// @param iMotorIndex
/// @param iPower (Range: 0..100)
/// @param iPower (Range: 0..settings.iMotorPwrStepCount)
void Can_SetMotorPower(int iMotorIndex, int iPower)
{
if (iPower <= MOTOR_PWR_MIN_PCT)
if ((motctrl[iMotorIndex].iMotorGear == MOTOR_GEAR_NEUTRAL) || (motctrl[iMotorIndex].nDriveReady == 0))
{
motctrl[iMotorIndex].iMotorPowerPct = MOTOR_PWR_MIN_PCT;
// when motor is neutral or not ready set power to 0
motctrl[iMotorIndex].iMotorPowerSteps = 0;
}
else if (iPower >= MOTOR_PWR_MAX_PCT)
else if (iPower <= 1)
{
motctrl[iMotorIndex].iMotorPowerPct = MOTOR_PWR_MAX_PCT;
// limit to min. power
motctrl[iMotorIndex].iMotorPowerSteps = 1;
}
else if (iPower >= settings.iMotorPwrStepCount)
{
// limit to max. power
motctrl[iMotorIndex].iMotorPowerSteps = settings.iMotorPwrStepCount;
}
else
{
motctrl[iMotorIndex].iMotorPowerPct = iPower;
motctrl[iMotorIndex].iMotorPowerSteps = iPower;
}
MqttClient_Publish_MotorPower(iMotorIndex, motctrl[iMotorIndex].iMotorPowerPct);
MqttClient_Publish_MotorPower(iMotorIndex, motctrl[iMotorIndex].iMotorPowerSteps);
motctrl[iMotorIndex].iMotorPower = 250 * motctrl[iMotorIndex].iMotorPowerPct / 100;
// calc value for telegram
if (motctrl[iMotorIndex].iMotorPowerSteps <= 0)
{
motctrl[iMotorIndex].iMotorPowerRaw = 0;
}
else
{
// Scale motor power from steps to raw value
motctrl[iMotorIndex].iMotorPowerRaw = (((settings.iMotorPwrMaxRaw - settings.iMotorPwrMinRaw) * (motctrl[iMotorIndex].iMotorPowerSteps - 1)) / (settings.iMotorPwrStepCount - 1)) + settings.iMotorPwrMinRaw;
if (motctrl[iMotorIndex].iMotorPowerRaw < settings.iMotorPwrMinRaw)
{
motctrl[iMotorIndex].iMotorPowerRaw = settings.iMotorPwrMinRaw;
}
else if (motctrl[iMotorIndex].iMotorPowerRaw > settings.iMotorPwrMaxRaw)
{
motctrl[iMotorIndex].iMotorPowerRaw = settings.iMotorPwrMaxRaw;
}
}
printf("Motor[%d]: Set power to %d%% -> %d\n",
iMotorIndex, motctrl[iMotorIndex].iMotorPowerPct, motctrl[iMotorIndex].iMotorPower);
mylog(LOG_INFO, "CAN: Motor[%d]: Set power to %d -> %d",
iMotorIndex, motctrl[iMotorIndex].iMotorPowerSteps, motctrl[iMotorIndex].iMotorPowerRaw);
}
@@ -132,6 +228,8 @@ void Can_SetMotorPower(int iMotorIndex, int iPower)
void Can_TransmitMotorGear(int iMotorIndex)
{
// Transmission rate: 100ms
if (intf_data[iMotorIndex].socket >= 0)
{
struct can_frame frame;
frame.can_id = 0x18F005D0;
@@ -151,6 +249,7 @@ void Can_TransmitMotorGear(int iMotorIndex)
}
}
}
/// @brief Send CAN protocol for motor power for the given motor
@@ -158,13 +257,15 @@ void Can_TransmitMotorGear(int iMotorIndex)
void Can_TransmitMotorPower(int iMotorIndex)
{
// Transmission rate: 50ms
if (intf_data[iMotorIndex].socket >= 0)
{
struct can_frame frame;
frame.can_id = 0x0CF003D0;
frame.can_id |= CAN_EFF_FLAG;
frame.can_dlc = 8;
frame.data[0] = 0xFF;
frame.data[1] = motctrl[iMotorIndex].iMotorPower; // motor power 0 = 0%, 250 = 100%
frame.data[1] = motctrl[iMotorIndex].iMotorPowerRaw; // motor power 0 = 0%, 250 = 100%
frame.data[2] = 0xFF;
frame.data[3] = 0xFF;
frame.data[4] = 0xFF;
@@ -177,3 +278,73 @@ void Can_TransmitMotorPower(int iMotorIndex)
}
}
}
/// @brief Read data from CAN interface
/// @param iMotorIndex
void Can_ReadData(int iMotorIndex)
{
if (intf_data[iMotorIndex].socket >= 0)
{
ssize_t nbytes = 0;
struct can_frame frame;
// increment cycle counter
IncBusTimeoutCounter(iMotorIndex);
// read one frame
if ((nbytes = read(intf_data[iMotorIndex].socket, &frame, sizeof(frame))) > 0)
{
canid_t pgn = frame.can_id & 0x00FFFF00;
switch(pgn)
{
case 0x00EF6400: // "repeat data"
break;
case 0x00F00300: // PGN 61443 "Electronic Engine Controller 2"
// we have sent this -> ignore
break;
case 0x00F00500: // PGN 61445 "Electronic Transmission Controller 2"
// we have sent this -> ignore
break;
case 0x00FF1300: // PGN 65299 "Manufacturer PGN"
// here we find the states of the switches
Can_Read_Manu_PGN(iMotorIndex, &frame);
break;
case 0x00FF1400: // PGN 65300 "Manufacturer PGN 2"
// here we find the actual power of the motor
Can_Read_Manu_PGN2(iMotorIndex, &frame);
break;
}
}
}
}
/// @brief Read PGN 65299
/// @param frame
void Can_Read_Manu_PGN(int iMotorIndex, struct can_frame *frame)
{
// we received a valid telegram -> set timeout counter to zero
iBusTimeoutCounter = 0;
// get switch states
motctrl[iMotorIndex].nSwitchState = frame->data[4];
MqttClient_Publish_MotorSwitchState(iMotorIndex, motctrl[iMotorIndex].nSwitchState);
// set flags
motctrl[iMotorIndex].nDriveConnected = 1; // we received a PGN -> so we are connected
motctrl[iMotorIndex].nDriveReady = ((motctrl[iMotorIndex].nSwitchState & 0x80) != 0) ? 1 : 0; // this bit shows if the drive is ready to run
}
/// @brief Read PGN 65300
/// @param frame
void Can_Read_Manu_PGN2(int iMotorIndex, struct can_frame *frame)
{
motctrl[iMotorIndex].iActualMotorPowerW = (frame->data[6] << 16) | (frame->data[5] << 8) | frame->data[4];
MqttClient_Publish_MotorActualPowerW(iMotorIndex, motctrl[iMotorIndex].iActualMotorPowerW);
}

View File

@@ -5,7 +5,9 @@
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <syslog.h>
#include <fcntl.h>
#include <net/if.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
@@ -13,24 +15,24 @@
#include <linux/can.h>
#include <linux/can/raw.h>
#define MOTOR_COUNT 2
#define MAX_MOTOR_COUNT 2
// motor gear: 0x7C=reverse, 0x7D=neutral, 0x7E=forward
#define MOTOR_GEAR_REVERSE 0x7C
#define MOTOR_GEAR_NEUTRAL 0x7D
#define MOTOR_GEAR_FORWARD 0x7E
#define MOTOR_PWR_MIN_PCT 5
#define MOTOR_PWR_MAX_PCT 100
#define MOTOR_PWR_STEP 14
struct MOTOR_CONTROL_DATA
{
char nDriveConnected;
char nDriveReady;
int iMotorGear;
int iMotorPower;
int iMotorPowerPct;
int iMotorPowerRaw;
int iMotorPowerSteps;
unsigned char nSwitchState;
int iActualMotorPowerW;
};
extern struct MOTOR_CONTROL_DATA motctrl[MOTOR_COUNT];
extern struct MOTOR_CONTROL_DATA motctrl[MAX_MOTOR_COUNT];
struct CAN_INTERFACE_DATA
{
@@ -49,4 +51,8 @@ void Can_SetMotorPower(int iMotorIndex, int iPower);
void Can_TransmitMotorGear(int iMotorIndex);
void Can_TransmitMotorPower(int iMotorIndex);
void Can_ReadData(int iMotorIndex);
void Can_Read_Manu_PGN(int iMotorIndex, struct can_frame *frame);
void Can_Read_Manu_PGN2(int iMotorIndex, struct can_frame *frame);
#endif

141
io/io.c
View File

@@ -1,43 +1,48 @@
#include "main.h"
#include "io.h"
#include <can/can_client.h>
#include <settings/settings.h>
#include <mqtt/mqtt_client.h>
struct GPIO_KEY_DATA gpioKeyStop;
struct GPIO_KEY_DATA gpioKeyPwrUp;
struct GPIO_KEY_DATA gpioKeyPwrDown;
char nInitialized = 0;
int iPowerSupplyOn = 0;
/// @brief Initialize the io pins
/// @return
int IO_Init()
{
iPowerSupplyOn = 0;
if (wiringPiSetupPinType(WPI_PIN_BCM))
{
printf("IO: Set up wiringPi failed!\n");
mylog(LOG_ERR, "IO: Set up wiringPi failed!");
return 1;
}
nInitialized = 1;
// IO-Pins für Tasten konfigurieren
// config IO-pins for the keys
SetupKeyPin(&gpioKeyStop, GPIO_KEY_STOP);
SetupKeyPin(&gpioKeyPwrUp, GPIO_KEY_PWRUP);
SetupKeyPin(&gpioKeyPwrDown, GPIO_KEY_PWRDOWN);
// IO-Pins für Ausgänge konfigurieren
// config IO-pins for outputs
SetupOutputPin(GPIO_LED_MOTRUN);
SetupOutputPin(GPIO_OUT_PWRON);
// Einschaltsequenz
WriteOutputPin(GPIO_LED_MOTRUN, HIGH);
delay(500);
WriteOutputPin(GPIO_LED_MOTRUN, LOW);
delay(500);
WriteOutputPin(GPIO_LED_MOTRUN, HIGH);
delay(500);
WriteOutputPin(GPIO_LED_MOTRUN, LOW);
delay(500);
printf("IO initialized successfull!\n");
mylog(LOG_INFO, "IO: Initialized successfull!");
return 0;
}
/// @brief Setup a pin for a key input
/// @param pdata
/// @param iKeyPin
void SetupKeyPin(struct GPIO_KEY_DATA *pdata, int iKeyPin)
{
pdata->iKeyPin = iKeyPin;
@@ -49,24 +54,26 @@ void SetupKeyPin(struct GPIO_KEY_DATA *pdata, int iKeyPin)
pdata->iKeyPressedCycleCounter = 0;
pdata->iKeyRepeatCycleCounter = 0;
// Wenn Eingang verwendet wird
if (pdata->iKeyPin > 0)
if ((pdata->iKeyPin > 0) && nInitialized)
{
mylog(LOG_DEBUG, "IO: Config Pin %d as input", pdata->iKeyPin);
pinMode(pdata->iKeyPin, INPUT);
pullUpDnControl(pdata->iKeyPin, PUD_UP);
}
}
/// @brief Read a key input
/// @param pdata
void ReadKey(struct GPIO_KEY_DATA *pdata)
{
if (pdata->iKeyPin > 0)
{
int newval = pdata->iKeyValue;
if (digitalRead(pdata->iKeyPin) == LOW) // invertierte Logik weil wir PullUp-Widerstand bei Betätigung auf low ziehen
if (digitalRead(pdata->iKeyPin) == LOW) // we use pull-up resistors so we have inverted logic
{
// Signal liegt an
// key is pressed
if (pdata->nLowCycleCounter > 0)
{
pdata->nLowCycleCounter--;
@@ -77,14 +84,14 @@ void ReadKey(struct GPIO_KEY_DATA *pdata)
pdata->nHighCycleCounter++;
if (pdata->nHighCycleCounter >= KEY_RISING_FILTERCYCLES)
{
// gewünschte Anzahl Zyklen stabil
// key is stable pressed
newval = 1;
}
}
}
else
{
// Signal liegt nicht an
// key is not pressed
if (pdata->nHighCycleCounter > 0)
{
pdata->nHighCycleCounter--;
@@ -95,7 +102,7 @@ void ReadKey(struct GPIO_KEY_DATA *pdata)
pdata->nLowCycleCounter++;
if (pdata->nLowCycleCounter >= KEY_FALLING_FILTERCYCLES)
{
// gewünschte Anzahl Zyklen stabil
// key is stable not pressed
newval = 0;
}
}
@@ -103,7 +110,7 @@ void ReadKey(struct GPIO_KEY_DATA *pdata)
if (newval && !pdata->iKeyValue)
{
// Taster wurde betätigt
// key was pressed -> rising edge
pdata->iKeyRisingEdge = 1;
pdata->iKeyValue = newval;
pdata->iKeyPressedCycleCounter = 0;
@@ -111,32 +118,32 @@ void ReadKey(struct GPIO_KEY_DATA *pdata)
}
else if (pdata->iKeyValue && !newval)
{
// Taster wurde losgelassen
// key was released -> falling edge
pdata->iKeyFallingEdge = 1;
pdata->iKeyValue = newval;
}
else
{
// Keine Änderung
// no change
pdata->iKeyRisingEdge = 0;
pdata->iKeyFallingEdge = 0;
if (pdata->iKeyValue)
{
// Wenn Taste gedrückt ist
// when key is pressed
if (pdata->iKeyPressedCycleCounter < KEY_START_REPEAT_CYCLECOUNT)
{
// Zyklen zählen
// count cycles
pdata->iKeyPressedCycleCounter++;
}
if (pdata->iKeyPressedCycleCounter >= KEY_START_REPEAT_CYCLECOUNT)
{
// Wenn Taste länger als KEY_START_REPEAT_CYCLECOUNT gedrückt ist
// when key is pressed for more then KEY_START_REPEAT_CYCLECOUNT cycles
pdata->iKeyRepeatCycleCounter++;
if (pdata->iKeyRepeatCycleCounter >= KEY_REPEAT_CYCLECOUNT)
{
// alle KEY_REPEAT_CYCLECOUNT Zyklen Tastendruck signalisieren
// signal key press every KEY_REPEAT_CYCLECOUNT cycles
pdata->iKeyRisingEdge = 1;
pdata->iKeyRepeatCycleCounter = 0;
}
@@ -146,66 +153,88 @@ void ReadKey(struct GPIO_KEY_DATA *pdata)
}
}
/// @brief Config pin for output
/// @param iOutPin
void SetupOutputPin(int iOutPin)
{
if (iOutPin > 0)
if ((iOutPin > 0) && nInitialized)
{
mylog(LOG_DEBUG, "IO: Config Pin %d as output", iOutPin);
pinMode(iOutPin, OUTPUT);
digitalWrite(iOutPin, LOW);
}
}
/// @brief Write an output pin to HIGH or LOW
/// @param iOutPin
/// @param iValue
void WriteOutputPin(int iOutPin, int iValue)
{
if (iOutPin > 0)
if ((iOutPin > 0) && nInitialized)
{
digitalWrite(iOutPin, iValue);
}
}
/// @brief look cyclic for the keys
void IO_DoCyclic()
{
ReadKey(&gpioKeyStop);
ReadKey(&gpioKeyPwrUp);
ReadKey(&gpioKeyPwrDown);
if (gpioKeyStop.iKeyValue)
if (gpioKeyStop.iKeyValue || atomic_load(&abKeyStop))
{
// Stop-Taste betätigt -> hat Vorrang vor den anderen Tasten
if (gpioKeyStop.iKeyRisingEdge)
// stop key is pressed
if (gpioKeyStop.iKeyRisingEdge || atomic_load(&abKeyStop))
{
mylog(LOG_INFO, "IO: KEY-Stop: Stop motor.");
Can_SetMotorGear(0, 0);
}
}
else
{
if (gpioKeyPwrUp.iKeyRisingEdge)
{
// Leistung erhöhen
if (motctrl[0].iMotorGear == MOTOR_GEAR_NEUTRAL)
{
Can_SetMotorGear(0, 1);
Can_SetMotorPower(0, MOTOR_PWR_MIN_PCT);
}
else
{
Can_SetMotorPower(0, motctrl[0].iMotorPowerPct + MOTOR_PWR_STEP);
}
}
if (gpioKeyPwrDown.iKeyRisingEdge)
if (gpioKeyPwrUp.iKeyRisingEdge || atomic_load(&abKeyPlus))
{
// Leistung verringern
if (motctrl[0].iMotorPowerPct > MOTOR_PWR_MIN_PCT)
if (motctrl[0].nDriveReady)
{
Can_SetMotorPower(0, motctrl[0].iMotorPowerPct - MOTOR_PWR_STEP);
}
else
// when drive is ready to run: plus key is pressed -> increase power
if (motctrl[0].iMotorGear == MOTOR_GEAR_NEUTRAL)
{
Can_SetMotorGear(0, 0);
mylog(LOG_INFO, "IO: KEY-Plus: Start motor.");
Can_SetMotorGear(0, 1);
Can_SetMotorPower(0, 1);
}
else if (motctrl[0].iMotorPowerSteps < settings.iMotorPwrStepCount)
{
mylog(LOG_INFO, "IO: KEY-Plus: Increase power.");
Can_SetMotorPower(0, motctrl[0].iMotorPowerSteps + 1);
}
}
else if (settings.iShellySupplyCount > 0)
{
// when drive is not ready and we have to switch the supply
MqttClient_SwitchPowerSupply(1);
iPowerSupplyOn = 1;
}
}
if (gpioKeyPwrDown.iKeyRisingEdge || atomic_load(&abKeyMinus))
{
// minus key is pressed -> decrease power
if (motctrl[0].iMotorPowerSteps > 1)
{
mylog(LOG_INFO, "IO: KEY-Minus: Decrease power.");
Can_SetMotorPower(0, motctrl[0].iMotorPowerSteps - 1);
}
// else
// {
// mylog(LOG_INFO, "IO: KEY-Minus: Stop motor.");
// Can_SetMotorGear(0, 0);
// }
}
atomic_store(&abKeyPlus, false);
atomic_store(&abKeyMinus, false);
atomic_store(&abKeyStop, false);
}

22
io/io.h
View File

@@ -3,19 +3,21 @@
#include <wiringPi.h>
#include <stdio.h>
#include <syslog.h>
#define GPIO_LED_MOTRUN 17 // GPIO Pin fuer LED Motor läuft
#define GPIO_LED_MOTRUN 17 // GPIO Pin for LED motor is running
#define GPIO_OUT_PWRON 22 // GPIO Pin for output "Ignition Key"
#define GPIO_KEY_STOP 26 // GPIO Pin fuer Taster Stop
#define GPIO_KEY_PWRUP 5 // GPIO Pin fuer Taster Leistung-Erhöhen
#define GPIO_KEY_PWRDOWN 6 // GPIO Pin fuer Taster Leistung-Verringern
#define GPIO_KEY_STOP 26 // GPIO Pin for Key "Stop"
#define GPIO_KEY_PWRUP 5 // GPIO Pin for Key "Increase Power"
#define GPIO_KEY_PWRDOWN 6 // GPIO Pin for Key "Decrease Power"
#define KEY_RISING_FILTERCYCLES 5 // Filterwert für Eingänge steigende Flanke
#define KEY_FALLING_FILTERCYCLES 15 // Filterwert für Eingänge (Zyklen-Zähler)
#define KEY_START_REPEAT_CYCLECOUNT 50 // Anzahl Zyklen, nach denen Wiederholungen beginnen
#define KEY_REPEAT_CYCLECOUNT 50 // Anzahl Zyklen, nach den wiederholt wird
#define KEY_RISING_FILTERCYCLES 5 // filter value for input rising edge
#define KEY_FALLING_FILTERCYCLES 15 // filter value for input falling edge
#define KEY_START_REPEAT_CYCLECOUNT 50 // number of cycles when to start repeating key presses
#define KEY_REPEAT_CYCLECOUNT 50 // number of cycles how often to repeat key presses
// Datenstruktur für einen Taster
// data structure for a key
struct GPIO_KEY_DATA
{
int iKeyPin;
@@ -28,6 +30,8 @@ struct GPIO_KEY_DATA
int iKeyRepeatCycleCounter;
};
extern int iPowerSupplyOn;
int IO_Init();
void IO_DoCyclic();
void SetupKeyPin(struct GPIO_KEY_DATA *pdata, int iKeyPin);

190
main.c
View File

@@ -3,10 +3,51 @@
#include <mqtt/mqtt_client.h>
#include <can/can_client.h>
#include <io/io.h>
#include <settings/settings.h>
#include <termios.h>
// Period info of the realtime task
struct period_info pinfo;
int iThreadControl = 0; // 0: thread is running, <0: thread shall exit, >0 thread has exited
int iLogToConsole = 1;
atomic_short asThreadControl = ATOMIC_VAR_INIT(0); // 0: thread is running, <0: thread shall exit, >0 thread has exited
// values for simulation
atomic_bool abKeyPlus = ATOMIC_VAR_INIT(false);
atomic_bool abKeyMinus = ATOMIC_VAR_INIT(false);
atomic_bool abKeyStop = ATOMIC_VAR_INIT(false);
/// @brief send a log message
/// @param prio
/// @param format
/// @param
void mylog(int prio, const char *format, ...)
{
if (prio <= settings.iDebugLevel)
{
va_list args;
// 1. Initialize the argument list with the last fixed argument
va_start(args, format);
// 2. Transfer to vsyslog (instead of syslog)
// vsyslog accepts a va_list
vsyslog(prio, format, args);
// 3. Optional: Output additionally to the console
// We have to reinitialize the list because va_list is "consumed."
if (iLogToConsole)
{
va_end(args);
va_start(args, format);
vfprintf(stderr, format, args);
fprintf(stderr, "\n");
}
// 4. Cleanup
va_end(args);
}
}
/// @brief Initialize period_info with period_ms for cyclic task
/// @param period_ms
@@ -55,6 +96,9 @@ static void do_cyclic_1ms(struct period_info *pinfo)
{
uint16_t nCalled = 0;
// read each cycle CAN data
Can_ReadData(0);
if ((pinfo->cyclecounter % 10) == 0)
{
// called every 10ms
@@ -74,7 +118,6 @@ static void do_cyclic_1ms(struct period_info *pinfo)
// called every 100ms
nCalled |= 0x0010;
Can_TransmitMotorGear(0);
//printf("%.3f: 100ms-Cycle %ld...\n", clock_gettime_s() - pinfo->fStartTime, pinfo->cyclecounter);
}
if (((pinfo->cyclecounter + 20) % 100) == 0)
@@ -86,14 +129,9 @@ static void do_cyclic_1ms(struct period_info *pinfo)
if (((pinfo->cyclecounter + 30) % 500) == 0)
{
// called every 250ms
// called every 500ms
MqttClient_Publisher();
}
if (nCalled > 0)
{
//printf("%.3f: Called 0x%.4X at cycle %ld...\n", clock_gettime_s() - pinfo->fStartTime, nCalled, pinfo->cyclecounter);
}
}
@@ -102,67 +140,85 @@ static void do_cyclic_1ms(struct period_info *pinfo)
/// @return
void *thread_func(void *data)
{
// Initialize IO Ports
if (IO_Init())
{
mylog(LOG_ERR, "IO_Init() failed!");
return NULL;
}
// Open CAN interface first motor
if (Can_OpenInterface(0, "can0"))
{
printf("Can_OpenInterface() failed!\n");
mylog(LOG_ERR, "Can_OpenInterface() failed!");
return NULL;
}
// Connect to mqtt broker
while (MqttClient_Connect() && (iThreadControl == 0))
while (MqttClient_Connect() && atomic_load(&asThreadControl) == 0)
{
printf("MqttClient_Connect() failed!\n");
mylog(LOG_ERR, "MqttClient_Connect() failed!");
sleep(10);
}
// Initialize IO Ports
if (IO_Init())
{
printf("IO_Init() failed!\n");
return NULL;
}
// initialize cyclic task
periodic_task_init(1, &pinfo);
// Ignition on
WriteOutputPin(GPIO_OUT_PWRON, HIGH);
// cyclic call of do_cyclic_1ms()
while (iThreadControl == 0)
while (atomic_load(&asThreadControl) == 0)
{
pinfo.cyclecounter++;
if (pinfo.cyclecounter >= 86400000)
if (pinfo.cyclecounter > CYCLE_COUNTER_MAX)
{
// Reset cycle counter every 24h
pinfo.cyclecounter = 0;
pinfo.cyclecounter = 1;
}
do_cyclic_1ms(&pinfo);
wait_rest_of_period(&pinfo);
}
// Ignition off
WriteOutputPin(GPIO_OUT_PWRON, LOW);
// Disconnect from mqtt broker
MqttClient_Close();
// Close CAN interface
Can_CloseInterface(0);
iThreadControl = 1;
// signal thread has finnished
atomic_store(&asThreadControl, 1);
return NULL;
}
// Funktion, um das Terminal in den "Raw Mode" zu versetzen
void set_conio_terminal_mode()
{
struct termios new_termios;
tcgetattr(0, &new_termios);
new_termios.c_lflag &= ~ICANON; // Deaktiviert den zeilenweisen Modus
new_termios.c_lflag &= ~ECHO; // Verhindert, dass die Taste angezeigt wird
tcsetattr(0, TCSANOW, &new_termios);
}
/// @brief catch signals and set flag to terminate for the realtime thread
/// @param signo
void sig_handler(int signo)
{
if ((signo == SIGINT) || (signo == SIGTERM))
{
printf("Received signal %d\n", signo);
iThreadControl = -1; // signal realtime thread to exit
mylog(LOG_INFO, "Received signal %d", signo);
atomic_store(&asThreadControl, -1); // signal realtime thread to exit
}
}
/// @brief Hauptfunktion Echtzeit-Task erstellen und starten
/// @brief Main function, create and start realtime task
/// @param argc
/// @param argv
/// @return
@@ -173,22 +229,39 @@ int main(int argc, char* argv[])
pthread_t thread;
int ret;
// First we have to get the default values of our settings
Settings_InitDefaultValues();
openlog("CanRtDriver", LOG_PID | LOG_CONS, LOG_DAEMON);
mylog(LOG_INFO, "Service started. PID: %d", getpid());
// Read the settings file after opening the log
Settings_ReadConfFile();
if (settings.iCanSimu)
{
// in simulation mode switch terminal to raw mode
set_conio_terminal_mode();
}
else
{
// catch signals
if (signal(SIGTERM, sig_handler) == SIG_ERR)
{
printf("Can't catch SIGTERM\n");
mylog(LOG_ERR, "Can't catch SIGTERM");
exit(-1);
}
if (signal(SIGINT, sig_handler) == SIG_ERR)
{
printf("Can't catch SIGINT\n");
mylog(LOG_ERR, "Can't catch SIGINT");
exit(-2);
}
}
/* Lock memory */
if(mlockall(MCL_CURRENT | MCL_FUTURE) == -1)
{
printf("mlockall failed: %m\n");
mylog(LOG_ERR, "mlockall failed: %m");
exit(-3);
}
@@ -196,7 +269,7 @@ int main(int argc, char* argv[])
ret = pthread_attr_init(&attr);
if (ret)
{
printf("init pthread attributes failed\n");
mylog(LOG_ERR, "init pthread attributes failed");
goto out;
}
@@ -204,7 +277,7 @@ int main(int argc, char* argv[])
ret = pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
if (ret)
{
printf("pthread setstacksize failed\n");
mylog(LOG_ERR, "pthread setstacksize failed");
goto out;
}
@@ -212,42 +285,87 @@ int main(int argc, char* argv[])
ret = pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
if (ret)
{
printf("pthread setschedpolicy failed\n");
mylog(LOG_ERR, "pthread setschedpolicy failed");
goto out;
}
param.sched_priority = 99; // Priority between 1 (low) and 99() high)
ret = pthread_attr_setschedparam(&attr, &param);
if (ret)
{
printf("pthread setschedparam failed\n");
mylog(LOG_ERR, "pthread setschedparam failed");
goto out;
}
/* Use scheduling parameters of attr */
ret = pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
if (ret)
{
printf("pthread setinheritsched failed\n");
mylog(LOG_ERR, "pthread setinheritsched failed");
goto out;
}
/* Create a pthread with specified attributes */
iThreadControl = 0;
atomic_store(&asThreadControl, 0);
ret = pthread_create(&thread, &attr, thread_func, NULL);
if (ret)
{
printf("create pthread failed\n");
mylog(LOG_ERR, "create pthread failed");
goto out;
}
if (settings.iCanSimu)
{
// in simulation mode we use keys to control the motors
mylog(LOG_INFO, "*** CanRtDriver in Simu-Mode ***");
while (1)
{
char ch = getchar();
mylog(LOG_INFO, "SIMU: Taste gedrückt: %c", ch);
if (ch == '+')
{
atomic_store(&abKeyPlus, true);
}
else if (ch == '-')
{
atomic_store(&abKeyMinus, true);
}
else if (ch == 's')
{
atomic_store(&abKeyStop, true);
}
else if (ch == 'p')
{
if (iPowerSupplyOn)
{
MqttClient_SwitchPowerSupply(0);
iPowerSupplyOn = 0;
}
else
{
MqttClient_SwitchPowerSupply(1);
iPowerSupplyOn = 1;
}
}
else if ( ch == 'q')
{
atomic_store(&asThreadControl, -1); // signal realtime thread to exit
break;
}
}
}
// join the thread and wait for it to exit
ret = pthread_join(thread, NULL);
if (ret)
{
printf("faild to join thread!\n");
mylog(LOG_ERR, "faild to join thread!");
}
out:
mylog(LOG_INFO, "Service quit.");
closelog();
return ret;
}

12
main.h
View File

@@ -11,8 +11,15 @@
#include <time.h>
#include <errno.h>
#include <signal.h>
#include <syslog.h>
#include <stdarg.h>
#include <stdatomic.h>
#include <stdbool.h>
//#define CYCLE_COUNTER_MAX 86400000
#define CYCLE_COUNTER_MAX 600000 // for testing only
struct period_info
{
struct timespec next_period;
@@ -21,6 +28,11 @@ struct period_info
float fStartTime;
};
extern atomic_bool abKeyPlus;
extern atomic_bool abKeyMinus;
extern atomic_bool abKeyStop;
extern struct period_info pinfo;
extern void mylog(int prio, const char *format, ...);
#endif

View File

@@ -7,13 +7,14 @@ CFLAGS = -Wextra -Wall -std=gnu99 -I. -Wno-unused-parameter -Wno-unused-variable
MQTT_SOURCES = mqtt/mqtt_client.c
CAN_SOURCES = can/can_client.c
IO_SOURCES = io/io.c
SETTINGS_SOURCES = settings/settings.c
PROG = bin/CanRtDriver
BINDIR = bin
all: $(BINDIR) $(PROG)
bin/CanRtDriver: main.c $(CAN_SOURCES) $(MQTT_SOURCES) $(IO_SOURCES)
bin/CanRtDriver: main.c $(CAN_SOURCES) $(MQTT_SOURCES) $(IO_SOURCES) $(SETTINGS_SOURCES)
$(CC) $(CFLAGS) $^ -lpthread -lmosquitto -lwiringPi -o $@
$(BINDIR):

View File

@@ -5,24 +5,33 @@
https://mosquitto.org/api/files/mosquitto-h.html
*/
#include <main.h>
#include "main.h"
#include <mqtt/mqtt_client.h>
#include <can/can_client.h>
#include <settings/settings.h>
#include <string.h>
#include <mosquitto.h>
const char* mqtt_topic_status_cyclecounter = "Pool/Status/CycleCounter";
// Topics to subscribe
const char* mqtt_topic_motor_gear_request = "Pool/Motor_Gear_Request";
const char* mqtt_topic_motor_power_request = "Pool/Motor_Power_Request";
// Topics to publish
const char* mqtt_topic_status_cyclecounter = "Pool/Status/CycleCounter";
const char* mqtt_topic_motor1_gear = "Pool/Motor1/Gear";
int iMqttMotor1Gear = 0;
const char* mqtt_topic_motor1_power = "Pool/Motor1/Power";
int iMqttMotor1Power = 0;
const char* mqtt_topic_motor2_gear = "Pool/Motor2/Gear";
int iMqttMotor2Gear = 0;
const char* mqtt_topic_motor2_power = "Pool/Motor2/Power";
int iMqttMotor2Power = 0;
const char* mqtt_topic_motor1_switchstate = "Pool/Motor1/SwitchState";
unsigned char nMotor1SwitchState = 255;
const char* mqtt_topic_motor2_switchstate = "Pool/Motor1/SwitchState";
unsigned char nMotor2SwitchState = 255;
const char* mqtt_topic_motor1_actualpowerw = "Pool/Motor1/ActualPowerW";
int iMqttMotor1ActualPowerW = -1;
const char* mqtt_topic_motor2_actualpowerw = "Pool/Motor1/ActualPowerW";
int iMqttMotor2ActualPowerW = -1;
const char* mqtt_broker_addr = "127.0.0.1";
const int mqtt_broker_port = 1883;
@@ -30,83 +39,108 @@ struct mosquitto *mosq; /**< Libmosquito MQTT client instance. */
int iHadConnectError = 0;
/// @brief callback function for incoming mqtt messages
/// @param mosq
/// @param userdata
/// @param message
void my_message_callback(struct mosquitto *mosq, void *userdata, const struct mosquitto_message *message)
{
char* topic_value = (char *)malloc(message->payloadlen + 1);
memcpy(topic_value, message->payload, message->payloadlen);
topic_value[message->payloadlen] = '\0';
if (strcmp(message->topic, mqtt_topic_motor1_gear) == 0)
if (strcmp(message->topic, mqtt_topic_motor_gear_request) == 0)
{
int val = 9999;
int val = 123456789;
if (sscanf(topic_value, "%d", &val))
{
printf("%ld: Received value for mqtt_topic_motor1_gear: %d\n", pinfo.cyclecounter, val);
iMqttMotor1Gear = val;
Can_SetMotorGear(0, val);
mylog(LOG_INFO, "MQTT: Received value for mqtt_topic_motor_gear_request: %d", val);
if (val == 123456789)
{
val = 0;
}
for (int i=0; i<settings.iMotorCount; i++)
{
Can_SetMotorGear(i, val);
}
}
else
{
printf("%ld: Received mqtt_topic_motor1_gear: %s\n", pinfo.cyclecounter, topic_value);
mylog(LOG_WARNING, "MQTT: Received mqtt_topic_motor_gear_request: %s", topic_value);
}
}
else if (strcmp(message->topic, mqtt_topic_motor1_power) == 0)
else if (strcmp(message->topic, mqtt_topic_motor_power_request) == 0)
{
int val = 9999;
int val = 123456789;
if (sscanf(topic_value, "%d", &val))
{
printf("%ld: Received value for mqtt_topic_motor1_power: %d\n", pinfo.cyclecounter, val);
iMqttMotor1Power = val;
Can_SetMotorPower(0, val);
}
else
mylog(LOG_INFO, "MQTT: Received value for mqtt_topic_motor_power_request: %d", val);
if (val == 123456789)
{
printf("%ld: Received mqtt_topic_motor1_power: %s\n", pinfo.cyclecounter, topic_value);
val = 0;
}
}
else if (strcmp(message->topic, mqtt_topic_motor2_gear) == 0)
for (int i=0; i<settings.iMotorCount; i++)
{
int val = 9999;
if (sscanf(topic_value, "%d", &val))
{
printf("%ld: Received value for mqtt_topic_motor2_gear: %d\n", pinfo.cyclecounter, val);
iMqttMotor2Gear = val;
Can_SetMotorGear(1, val);
}
else
{
printf("%ld: Received mqtt_topic_motor2_gear: %s\n", pinfo.cyclecounter, topic_value);
}
}
else if (strcmp(message->topic, mqtt_topic_motor2_power) == 0)
{
int val = 9999;
if (sscanf(topic_value, "%d", &val))
{
printf("%ld: Received value for mqtt_topic_motor2_power: %d\n", pinfo.cyclecounter, val);
iMqttMotor2Power = val;
Can_SetMotorPower(1, val);
}
else
{
printf("%ld: Received mqtt_topic_motor2_power: %s\n", pinfo.cyclecounter, topic_value);
Can_SetMotorPower(i, val);
}
}
else
{
printf("%ld: Received publish('%s'): %s\n", pinfo.cyclecounter, message->topic, topic_value);
mylog(LOG_WARNING, "MQTT: Received mqtt_topic_motor_gear_request: %s", topic_value);
}
}
else
{
mylog(LOG_WARNING, "MQTT: Received publish('%s'): %s", message->topic, topic_value);
}
free(topic_value);
}
/// @brief callback function after connection
void my_connect_callback(struct mosquitto *mosq, void *obj, int rc)
{
if (rc == 0)
{
if (mosquitto_subscribe(mosq, NULL, mqtt_topic_motor_gear_request, 0) != MOSQ_ERR_SUCCESS)
{
mylog(LOG_ERR, "MQTT: mosquitto_subscribe(mqtt_topic_motor_gear_request) failed!");
}
if (mosquitto_subscribe(mosq, NULL, mqtt_topic_motor_power_request, 0) != MOSQ_ERR_SUCCESS)
{
mylog(LOG_ERR, "MQTT: mosquitto_subscribe(mqtt_topic_motor_power_request) failed!");
}
char message[10];
snprintf(message, sizeof(message), "0");
if (mosquitto_publish(mosq, NULL, mqtt_topic_motor_gear_request, strlen(message), &message, 0, false) != MOSQ_ERR_SUCCESS)
{
mylog(LOG_ERR, "MQTT: mosquitto_publish(mqtt_topic_motor_gear_request) failed!");
}
if (mosquitto_publish(mosq, NULL, mqtt_topic_motor_power_request, strlen(message), &message, 0, false) != MOSQ_ERR_SUCCESS)
{
mylog(LOG_ERR, "MQTT: mosquitto_publish(mqtt_topic_motor_power_request) failed!");
}
for (int i=0; i<settings.iMotorCount; i++)
{
MqttClient_Publish_MotorSwitchState(i, 0);
MqttClient_Publish_MotorActualPowerW(i, 0);
}
}
}
/// @brief connect to mqtt broker
/// @return
int MqttClient_Connect()
{
int major, minor, revision;
mosquitto_lib_version(&major, &minor, &revision);
printf("Libmosquitto version: %d.%d.%d\n", major, minor, revision);
mylog(LOG_INFO, "MQTT: Libmosquitto version: %d.%d.%d", major, minor, revision);
// libmosquitto initialization
mosquitto_lib_init();
@@ -115,18 +149,19 @@ int MqttClient_Connect()
mosq = mosquitto_new(NULL, true, NULL);
if (mosq == NULL)
{
printf("Failed to create mosquitto client!/n");
mylog(LOG_ERR, "MQTT: Failed to create mosquitto client!/n");
iHadConnectError++;
return 1;
}
// Define a function which will be called by libmosquitto client every time when there is a new MQTT message
mosquitto_message_callback_set(mosq, my_message_callback);
mosquitto_connect_callback_set(mosq, my_connect_callback);
// Connect to MQTT broker
if (mosquitto_connect(mosq, mqtt_broker_addr, mqtt_broker_port, 60) != MOSQ_ERR_SUCCESS)
{
printf("Error: connecting to MQTT broker failed\n");
mylog(LOG_ERR, "MQTT: Connecting to MQTT broker failed");
MqttClient_Close();
iHadConnectError++;
return 2;
@@ -136,92 +171,34 @@ int MqttClient_Connect()
{
/* Wenn wir Verbindungsfehler hatten, dann befinden wir uns wohl in Boot-Prozess und der Mosquitto ist
gerade erst gestartet. Wir müssen hier etwas warten, sonst funktioniert das Subscriben nicht */
sleep(10);
sleep(500);
}
// publish all topics we want to subscribe
char message[10];
snprintf(message, sizeof(message), "0");
if (mosquitto_publish(mosq, NULL, mqtt_topic_motor1_gear, strlen(message), &message, 0, false) != MOSQ_ERR_SUCCESS)
{
printf("mosquitto_publish(mqtt_topic_motor1_gear) fehlgeschlagen!\n");
MqttClient_Close();
iHadConnectError++;
return 10;
}
if (mosquitto_publish(mosq, NULL, mqtt_topic_motor1_power, strlen(message), &message, 0, false) != MOSQ_ERR_SUCCESS)
{
printf("mosquitto_publish(mqtt_topic_motor1_power) fehlgeschlagen!\n");
MqttClient_Close();
iHadConnectError++;
return 11;
}
if (mosquitto_publish(mosq, NULL, mqtt_topic_motor2_gear, strlen(message), &message, 0, false) != MOSQ_ERR_SUCCESS)
{
printf("mosquitto_publish(mqtt_topic_motor2_gear) fehlgeschlagen!\n");
MqttClient_Close();
iHadConnectError++;
return 12;
}
if (mosquitto_publish(mosq, NULL, mqtt_topic_motor2_power, strlen(message), &message, 0, false) != MOSQ_ERR_SUCCESS)
{
printf("mosquitto_publish(mqtt_topic_motor2_power) fehlgeschlagen!\n");
MqttClient_Close();
iHadConnectError++;
return 13;
}
// subscribe all needed topics
if (mosquitto_subscribe(mosq, NULL, mqtt_topic_motor1_gear, 0) != MOSQ_ERR_SUCCESS)
{
printf("mosquitto_subscribe(mqtt_topic_motor1_gear) fehlgeschlagen!\n");
MqttClient_Close();
iHadConnectError++;
return 20;
}
if (mosquitto_subscribe(mosq, NULL, mqtt_topic_motor1_power, 0) != MOSQ_ERR_SUCCESS)
{
printf("mosquitto_subscribe(mqtt_topic_motor1_power) fehlgeschlagen!\n");
MqttClient_Close();
iHadConnectError++;
return 21;
}
if (mosquitto_subscribe(mosq, NULL, mqtt_topic_motor2_gear, 0) != MOSQ_ERR_SUCCESS)
{
printf("mosquitto_subscribe(mqtt_topic_motor2_gear) fehlgeschlagen!\n");
MqttClient_Close();
iHadConnectError++;
return 22;
}
if (mosquitto_subscribe(mosq, NULL, mqtt_topic_motor2_power, 0) != MOSQ_ERR_SUCCESS)
{
printf("mosquitto_subscribe(mqtt_topic_motor2_power) fehlgeschlagen!\n");
MqttClient_Close();
iHadConnectError++;
return 23;
}
printf("MQTT: Connected successfull!\n");
mylog(LOG_INFO, "MQTT: Connected successfull after %d errors!", iHadConnectError);
return 0;
}
/// @brief Disconnect from mqtt broker
void MqttClient_Close()
{
//Clean up/destroy objects created by libmosquitto
mosquitto_destroy(mosq);
mosquitto_lib_cleanup();
printf("MQTT: Disconnected!\n");
mylog(LOG_INFO, "MQTT: Disconnected!");
}
/// @brief Has to be called cyclic, does the work
void MqttClient_Refresher()
{
mosquitto_loop(mosq, 0, 1);
}
/// @brief publish the cycle counter as a sign of life
void MqttClient_Publisher()
{
char message[100];
@@ -231,51 +208,110 @@ void MqttClient_Publisher()
}
/// @brief Publish the actual motor gear
/// @param iMotorIndex
/// @param iGear
void MqttClient_Publish_MotorGear(int iMotorIndex, int iGear)
{
if (iMotorIndex == 0)
{
if (iGear != iMqttMotor1Gear)
{
iMqttMotor1Gear = iGear;
char message[100];
snprintf(message, sizeof(message), "%d", iGear);
mosquitto_publish(mosq, NULL, mqtt_topic_motor1_gear, strlen(message), message, 0, false);
}
}
else if (iMotorIndex == 1)
{
if (iGear != iMqttMotor2Gear)
{
iMqttMotor2Gear = iGear;
char message[100];
snprintf(message, sizeof(message), "%d", iGear);
mosquitto_publish(mosq, NULL, mqtt_topic_motor2_gear, strlen(message), message, 0, false);
}
}
}
/// @brief Publish the requested motor power
/// @param iMotorIndex
/// @param iPower
void MqttClient_Publish_MotorPower(int iMotorIndex, int iPower)
{
if (iMotorIndex == 0)
{
if (iPower != iMqttMotor1Power)
{
iMqttMotor1Power = iPower;
char message[100];
snprintf(message, sizeof(message), "%d", iPower);
mosquitto_publish(mosq, NULL, mqtt_topic_motor1_power, strlen(message), message, 0, false);
}
}
else if (iMotorIndex == 1)
{
if (iPower != iMqttMotor2Power)
{
iMqttMotor2Power = iPower;
char message[100];
snprintf(message, sizeof(message), "%d", iPower);
mosquitto_publish(mosq, NULL, mqtt_topic_motor2_power, strlen(message), message, 0, false);
}
}
/// @brief Publish the actual switches states
/// @param iMotorIndex
/// @param nSwitchState
void MqttClient_Publish_MotorSwitchState(int iMotorIndex, unsigned char nSwitchState)
{
if (iMotorIndex == 0)
{
if (nSwitchState != nMotor1SwitchState)
{
nMotor1SwitchState = nSwitchState;
char message[100];
snprintf(message, sizeof(message), "%2X", nSwitchState);
mosquitto_publish(mosq, NULL, mqtt_topic_motor1_switchstate, strlen(message), message, 0, false);
}
}
else if (iMotorIndex == 1)
{
if (nSwitchState != nMotor2SwitchState)
{
nMotor2SwitchState = nSwitchState;
char message[100];
snprintf(message, sizeof(message), "%2X", nSwitchState);
mosquitto_publish(mosq, NULL, mqtt_topic_motor2_switchstate, strlen(message), message, 0, false);
}
}
}
/// @brief Publish the actual real motor power
/// @param iMotorIndex
/// @param iMotorPowerW
void MqttClient_Publish_MotorActualPowerW(int iMotorIndex, int iMotorPowerW)
{
if (iMotorIndex == 0)
{
if (iMotorPowerW != iMqttMotor1ActualPowerW)
{
iMqttMotor1ActualPowerW = iMotorPowerW;
char message[100];
snprintf(message, sizeof(message), "%d", iMotorPowerW);
mosquitto_publish(mosq, NULL, mqtt_topic_motor1_actualpowerw, strlen(message), message, 0, false);
}
}
else if (iMotorIndex == 1)
{
if (iMotorPowerW != iMqttMotor2ActualPowerW)
{
iMqttMotor2ActualPowerW = iMotorPowerW;
char message[100];
snprintf(message, sizeof(message), "%d", iMotorPowerW);
mosquitto_publish(mosq, NULL, mqtt_topic_motor2_actualpowerw, strlen(message), message, 0, false);
}
}
}
void MqttClient_SwitchPowerSupply(int on)
{
char *cmd = on ? "on" : "off";
for (int i=0; i<settings.iShellySupplyCount; i++)
{
mosquitto_publish(mosq, NULL, settings.sShellySupplyTopic[i], strlen(cmd), cmd, 0, false);
}
mylog(LOG_INFO, "MQTT: Switch supply-shellies %s", cmd);
}

View File

@@ -1,7 +1,7 @@
#if !defined(__MQTT_CLIENT_H__)
#define __MQTT_CLIENT_H__
#define USE_MOSQUITTO_LIB
//#define USE_MOSQUITTO_LIB
int MqttClient_Connect();
void MqttClient_Close();
@@ -9,5 +9,8 @@ void MqttClient_Refresher();
void MqttClient_Publisher();
void MqttClient_Publish_MotorGear(int iMotorIndex, int iGear);
void MqttClient_Publish_MotorPower(int iMotorIndex, int iPower);
void MqttClient_Publish_MotorSwitchState(int iMotorIndex, unsigned char nSwitchState);
void MqttClient_Publish_MotorActualPowerW(int iMotorIndex, int iMotorPowerW);
void MqttClient_SwitchPowerSupply(int on);
#endif

View File

@@ -2,16 +2,27 @@
## Datei gehört in /etc/systemd/system
## aktivieren dann mit:
## - sudo systemctl daemon-reload
## - sudo systemctl enable CanRtDriver.service
## - sudo systemctl start CanRtDriver.service
## - sudo systemctl enable CanRtDriver.service NICHT AUSFÜHREN!!!
## - sudo systemctl start CanRtDriver.service NICHT AUSFÜHREN!!!
## => Service wird über ./scripts/can_link_up.sh gestartet
##
## Device Unit ermitteln mit: systemctl --type=device | grep can0
## Ggf. unter 'Requires', 'After' und 'BindsTo' anpassen!
[Unit]
Description=CAN-Bus Treiber für Gegenstromanlage
After=network.target
#After=network.target
# Stellt sicher, dass die CAN-Device Unit gestartet wird
Requires=sys-subsystem-net-devices-can0.device
# Stellt die Reihenfolge sicher (Start nach der Device Unit)
After=network-online.target sys-subsystem-net-devices-can0.device
# Optional: Stoppt den Dienst, wenn das Interface offline geht
BindsTo=sys-subsystem-net-devices-can0.device
[Service]
# Skript, das wartet, bis das Interface "UP" ist (ersetzen Sie can0 durch Ihren Interface-Namen)
#ExecStartPre=/bin/sh -c 'while ! ip link show can0 | grep -q "state UP"; do sleep 1; done'
ExecStart=/home/veltmann/Documents/CanRtDriver/bin/CanRtDriver
# Oder: ExecStart=/usr/bin/python3 /home/pi/meinprogramm.py
WorkingDirectory=/home/veltmann/Documents/CanRtDriver/bin
StandardOutput=inherit
StandardError=inherit

View File

@@ -2,6 +2,10 @@
ip link set can0 up type can bitrate 250000
ip link set can1 up type can bitrate 250000
sleep 5
ifconfig can0 txqueuelen 65536
ifconfig can1 txqueuelen 65536
sleep 10
systemctl start CanRtDriver

2
scripts/dump_power.sh Executable file
View File

@@ -0,0 +1,2 @@
candump can0,18FF1416:1FFFFFFF

2
scripts/dump_switch.sh Executable file
View File

@@ -0,0 +1,2 @@
candump can0,18FF1316:1FFFFFFF

6
scripts/git_commit_push.sh Executable file
View File

@@ -0,0 +1,6 @@
#!/bin/bash
git add --all
git commit -am "$1"
git push

4
scripts/git_undo.sh Executable file
View File

@@ -0,0 +1,4 @@
#!/bin/bash
git restore .

5
scripts/git_update.sh Executable file
View File

@@ -0,0 +1,5 @@
#!/bin/bash
git fetch
git pull

168
settings/settings.c Executable file
View File

@@ -0,0 +1,168 @@
#include <main.h>
#include <settings/settings.h>
#include <ctype.h>
struct APP_SETTINGS settings;
void Settings_InitDefaultValues()
{
// #define LOG_EMERG 0 /* system is unusable */
// #define LOG_ALERT 1 /* action must be taken immediately */
// #define LOG_CRIT 2 /* critical conditions */
// #define LOG_ERR 3 /* error conditions */
// #define LOG_WARNING 4 /* warning conditions */
// #define LOG_NOTICE 5 /* normal but significant condition */
// #define LOG_INFO 6 /* informational */
// #define LOG_DEBUG 7 /* debug-level messages */
settings.iDebugLevel = LOG_INFO;
settings.iCanSimu = 1;
settings.iMotorCount = 1;
settings.iMotorPwrMinRaw = 38;
settings.iMotorPwrMaxRaw = 250;
settings.iMotorPwrStepCount = 7;
settings.iShellySupplyCount = 0;
for (int i=0; i<MAX_SHELLIES_COUNT; i++)
{
settings.sShellySupplyTopic[i][0] = '\0';
}
// Get path of the executable itself
ssize_t length = readlink("/proc/self/exe", settings.sExePath, sizeof(settings.sExePath) - 1);
if (length >= 0)
{
settings.sExePath[length] = '\0';
mylog(LOG_INFO, "SETTINGS: Executable path: %s", settings.sExePath);
}
else
{
settings.sExePath[0] = '\0';
mylog(LOG_ERR, "SETTINGS: Executable path not found!");
}
}
char *trim_str(const char *s)
{
// Führende Leerzeichen finden
while (isspace((unsigned char)*s))
s++;
// Falls der String leer ist
if (*s == 0)
return strdup("");
// Letztes Zeichen finden
const char *end = s + strlen(s) - 1;
while (end > s && isspace((unsigned char)*end))
end--;
// Länge des neuen Strings berechnen
size_t len = (end - s) + 1;
// Speicher reservieren (+1 für das Null-Byte)
char *new_str = malloc(len + 1);
if (new_str)
{
memcpy(new_str, s, len);
new_str[len] = '\0';
}
return new_str;
}
void Settings_ReadConfFile()
{
//const char *filename = "/etc/CanRtDriver.conf";
char filename[MAX_PATH + 50];
sprintf(filename, "/etc/CanRtDriver.conf");
FILE *file = fopen(filename, "r");
if (file == NULL)
{
mylog(LOG_INFO, "SETTINGS: File %s noch found", filename);
sprintf(filename, "%s.conf", settings.sExePath);
file = fopen(filename, "r");
if (file == NULL)
{
mylog(LOG_ERR, "SETTINGS: No conf file found!");
return;
}
}
mylog(LOG_INFO, "SETTINGS: Reading %s", filename);
char line[MAX_LINE_LENGTH];
while (fgets(line, sizeof(line), file))
{
// 1. Ignore comments and empty lines
if (line[0] == '#' || line[0] == '\n' || line[0] == '\r')
{
continue;
}
// 2. Remove CRLF at end of line
line[strcspn(line, "\r\n")] = 0;
// 3. Split line to key and value
char *key = trim_str(strtok(line, "="));
char *value = trim_str(strtok(NULL, "="));
if ((key != NULL) && (value != NULL))
{
if (strcmp(key, "DebugLevel") == 0)
{
// how many log messages we want to see
settings.iDebugLevel = atoi(value);
mylog(LOG_DEBUG, "SETTINGS: %s = %d", key, settings.iDebugLevel);
}
else if (strcmp(key, "CanSimu") == 0)
{
// shall we do simulation
settings.iCanSimu = atoi(value);
mylog(LOG_DEBUG, "SETTINGS: %s = %d", key, settings.iCanSimu);
}
else if (strcmp(key, "MotorPowerMinRaw") == 0)
{
// Minimum power value for the motors
settings.iMotorPwrMinRaw = atoi(value);
mylog(LOG_DEBUG, "SETTINGS: %s = %d", key, settings.iMotorPwrMinRaw);
}
else if (strcmp(key, "MotorPowerMaxRaw") == 0)
{
// Maximum power value for the motors
settings.iMotorPwrMaxRaw = atoi(value);
mylog(LOG_DEBUG, "SETTINGS: %s = %d", key, settings.iMotorPwrMaxRaw);
}
else if (strcmp(key, "MotorPowerStepCount") == 0)
{
// How many steps do we want to have switching the power
settings.iMotorPwrStepCount = atoi(value);
mylog(LOG_DEBUG, "SETTINGS: %s = %d", key, settings.iMotorPwrStepCount);
}
else if (strcmp(key, "SupplyShellyMqttTopic") == 0)
{
// MQTT topic for switching power supply
if (settings.iShellySupplyCount < MAX_SHELLIES_COUNT)
{
strcpy(settings.sShellySupplyTopic[settings.iShellySupplyCount], value);
settings.iShellySupplyCount++;
}
else
{
mylog(LOG_WARNING, "SETTINGS: Too many SupplyShellyMqttTopic!");
}
}
else
{
mylog(LOG_WARNING, "SETTING: Unknown key: %s", key);
}
}
}
fclose(file);
}

33
settings/settings.h Executable file
View File

@@ -0,0 +1,33 @@
#if !defined(__SETTINGS_H__)
#define __SETTINGS_H__
#include <stdio.h>
#include <unistd.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#define MAX_LINE_LENGTH 256
#define MAX_PATH 256
#define MAX_SHELLIES_COUNT 5
struct APP_SETTINGS
{
int iDebugLevel; // Level of debug messages
char sExePath[MAX_PATH]; // Path of the executable
int iCanSimu; // Simulate CAN if 1
int iMotorCount; // Number of used motors (1 or 2)
int iMotorPwrMinRaw; // Minimum power value for motor (raw value)
int iMotorPwrMaxRaw; // Maximum power value for motor (raw value)
int iMotorPwrStepCount; // Number of power steps
int iShellySupplyCount; // How many Shellies we have to switch the power supply
char sShellySupplyTopic[MAX_SHELLIES_COUNT][MAX_PATH];
};
extern struct APP_SETTINGS settings;
void Settings_InitDefaultValues();
void Settings_ReadConfFile();
#endif